Orientation opponency in human vision revealed by energy-frequency analysis
نویسندگان
چکیده
Studies of second-order visual processing have primarily been concerned with understanding the mechanisms for detecting spatiotemporal variations in such attributes as contrast, orientation, spatial frequency, etc. Here, we have examined the orientation characteristics of second-order processes using bandpass noise whose Fourier energy is sinusoidally modulated across orientation, rather than across space or time. Sensitivity for detecting orientation-energy modulations was measured as a function of modulation frequency. The sensitivity function was bandpass, with a pronounced peak at an orientation frequency of 4 cycles/pi. An inverse Fourier transform of the sensitivity function revealed a filter profile displaying a centre-surround antagonism across orientation, with an excitatory centre within 6-9 deg and inhibitory lobes at 15-20 deg from the filter's centre. The degree of centre-surround antagonism increased with stimulus size far beyond the spatial range of the first-order filters (more than 64 times the dominant spatial wavelength of the noise carrier). These results suggest that second-order processing involves 'orientation-opponent' channels that extract differences in first-order outputs across orientation over a wide area of the visual field.
منابع مشابه
Is there opponent-orientation coding in the second-order channels of pattern vision?
Is there opponency between orientation-selective processes in pattern perception, analogous to opponency between color mechanisms? Here we concentrate on possible opponency in second-order channels. We compare several possible second-order structures: SIGN-opponent-only channels in which there is no opponency between orientations (also called complex channels or filter-rectify-filter mechanisms...
متن کاملA human vision based computational model for chromatic texture segregation
We have developed a computational model for texture perception which has physiological relevance and correlates well with human performance. The model attempts to simulate the visual processing characteristics by incorporating mechanisms tuned to detect luminance-polarity, orientation, spatial frequency and color, which are characteristic features of any textural image. We obtained a very good ...
متن کاملOrientation discrimination in human vision: Psychophysics and modeling
We evaluated orientation discrimination thresholds using an external noise paradigm. Stimuli were spatiotemporal Gaussian patches of 2D orientation noise band-pass filtered in Fourier domain. Orientation acuity was measured for various combinations of stimulus spatial bandwidth, spatial frequency, and size as a function of orientation bandwidths of the stimuli. Stimulus contrast was matched in ...
متن کاملDifferential distributions of red-green and blue-yellow cone opponency across the visual field.
The color vision of Old World primates and humans uses two cone-opponent systems; one differences the outputs of L and M cones forming a red-green (RG) system, and the other differences S cones with a combination of L and M cones forming a blue-yellow (BY) system. In this paper, we show that in human vision these two systems have a differential distribution across the visual field. Cone contras...
متن کاملColor opponency is an efficient representation of spectral properties in natural scenes
The human visual system encodes the chromatic signals conveyed by the three types of retinal cone photoreceptors in an opponent fashion. This opponency is thought to reduce redundant information by decorrelating the photoreceptor signals. Correlations in the receptor signals are caused by the substantial overlap of the spectral sensitivities of the receptors, but it is not clear to what extent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Vision Research
دوره 43 شماره
صفحات -
تاریخ انتشار 2003